END SEMESTER EXAMINATION DECEMBER 2022

Program: T.Y .Mechanical Engineering Dum V Duration: 3 Hour

Course Code: MC- BT003
Course Name: Health Safety and Environment

Maximum Points: 100
Semester: Z

Notes: 1. Questions number 01 is compulsory.
2. Solve any four main questions out of remaining six main questions.
3. Draw neat schematic diagrams wherever is necessary, highlight important points.
4. Assume suitable data if necessary and mention it.

Q.No.	Questions	Point	co	BL	Module
Q1 A	Write a short note on cut set method? Using MOCUS algorithm find minimal cut-set for the following system? (Stepwise answer expected)	10	2	$L 1$	4
B	Draw neat sketch'bottom up approach applied to a system using failifife mode and effect analysis (FMEA) technique? Draw sketch of methodology and documentation table of FMEA?	10	1	L1	3
Q2 A	Write a short note OHSAS 18001 and its PDCA tool? With the help of sketch justify using 2-3 points, how entropy risk model helpful for OHS management?	10	1	L3	1

END SEMESTER EXAMINATION DECEMBER 2022

B	A technician working at a height, and fitting a heavy hazardous chemical tank at that location, draw safety domain ontology for this case? Enlist hazardous elements, initiating mechanism and threat elements as in general case?	10	2	L3	2
Q3 A	Write all steps involved while applying PHL methodology to a system? Explain each step in brief?	10	1	L2	3
B	Define wetlands according to Ramsar convention? Give classification of wetlands?	10	3	L1	5
Q4 A	Write short note on cycle of neglect with help necessary sketch? Give any 5 principles of occupational health and safety?	10	2	L2	2
B	Enlist and explain any two water purification techniques using 3 points each? What is eutrophication of lake and give its effects?	10	4	L3	7
Q5 A	What is PSC concept for fault tree tree constructuion? Basic Events G1, G2 \& G3 (refers to failure of respective generator) will lead to system top level event 'TE' (partial loss of power). Draw fault tree diagram for above case, then convert it into an equivalent AND \& OR gate. Also calculate probability of occurrence of top level event if each basic event's probability of occurrence is equal to 0.25 .	10	1	L3	4
B	Draw neat schematic sketch which enlist's elements $\&$ are important for safety engineers knowledge base as Primary elements and as Secondary elements? Explain any one primary element in details?	10	3	L2	1
Q6 A	Explain why to conserve wetlands? Write short note on Convention on Biological Diversity (CBD)?	10	3	L2	5
B	What are the industry and vehicle specific air pollution control strategies can be adopted and implemented in metro city like Mumbai?	10	4	L1	7
Q7 A	What is sustainable development and give its need?	10	3	L2	6
B	Give impact of waste on health, climate and socioeconomic condition if not managed wisely?	10	4	L3	6

Bharatiya Vidya Bhavan's

SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

Note:

1. Question no. 1 is Compulsory
2. Answer any Three out of remaining Five questions.
3. Assume suitable data if necessary.

Important Instructions:

1. All drawings (In AutoCad) should be submitted in a Title sheet layout with title block filled with respective details. Make Separate File for each question.
2. Create Folder Name as given in e.g. M201001_ENDSEM DEC 2022
3. Create File name as given in e.g. M201001_Q1a and save it in the same folder only.
4. After the exams, the folder consisting the answered files will be uploaded on Server. Students to make sure their folders are properly uploaded before leaving the Hall.
5. All Free Hand Sketches and Calculation of limits to be answered on the given blank sheets and submit in person.
6. Save Your Work Regularly in AutoCad.

SET A

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$		$\begin{gathered} \text { Poin } \\ \text { ts } \end{gathered}$	$\begin{aligned} & \mathrm{CO} / \\ & \mathrm{MO} \end{aligned}$	BL	PI
Q. 1	Given in the Figure 1 is the Front View Details of Sleeve and Cotter Joint. a) Create 3d-models of parts, b) Assemble the 3 d model parts in their functional positions. c) Plot drawings in layout as given below: i. Sectional Front View. ii. Side View. iii. Bill of Material.	$\begin{aligned} & 05 \\ & 07 \\ & 08 \end{aligned}$	$\begin{aligned} & 01 / 01 \\ & 03 / 01 \\ & 04 / 01 \end{aligned}$	03	5.2.2
Q. 1	(d) Draw Free Hand Sketches of the following: (i) Flange Nut. (ii) Square Neck Stud.	05	02/02	01	1.4.1

Q.2	A vertical square pyramid, base 60 mm side and axis 100 mm is resting on its base on the H.P. with all sides of base equally inclined to V.P. A horizontal cylinder, diameter 40 mm, having its axis parallel to both the V.P. and H.P. penetrates the pyramid. The axis of the solids intersects each other at right angle and cylinder axis is 35 mm above the pyramid base. a) Create 3d-models of both solids. b) Assemble them in their given positions. c.) Plot drawings in layout as given below i. Front view ii. Top View iii. Side View			

Figure 1: Details of Sleeve and Cotter Joint

Figure 2: Details of Plummer Block Bearing

ENDSEM Examinations - December 2022

Program: B. Tech in Mechanical Engineer品g	Duration: 3 Hrs	
Course Code: PC - BTM515	Maximum Points: 100	
Course Name: Computer Aided Machine Drawing	Semester: V	
Note:		
1. Question no. 1 is Compulsory		

1. Question no. 1 is Compulsory
2. Answer any Three out of remaining Five questions.
3. Assume suitable data if necessary.

Important Instructions:

1. All drawings (In AutoCad) should be submitted in a Title sheet layout with title block filled with respective details. Make Separate File for each question.
2. Create Folder Name as given in egg. M201001_ENDSEM DEC 2022
3. Create File name as given in e.g. M201001_Q1a and save it in the same folder only.
4. After the exams, the folder consisting the answered files will be uploaded on Server. Students to make sure their folders are properly uploaded before leaving the Hall.
5. All Free Hand Sketches and Calculation of limits to be answered on the given blank sheets and submit in person.
6. Save Your Work Regularly in AutoCad.

SET B

Figure 1: Details of Simple Flange Coupling

Figure 2: Details of Gib and Cotter Joint

Figure 3: Assembly of V-Relt Pulley

Figure 4: Details of Expansion Joint

Figure 5: Assembly of Drill Jig
pg $6 / 6$.

Program: Mechanical $\Gamma_{j} \cdot 4,(m) \operatorname{sen} V$ Course Code: PC-BTM503

Course Name: Mechatronics
Notes: Question No. 1 is compulsory
Solve any Four questions out of SLX

Duration: 3 Hrs
Maximum Points: 100
Semester: V

Q.No.	Questions	Points	co	BL	PI
1	a) Enlist different applications of Mechatronics in Home, Office and in Industry b) Discuss the architecture of 8085 c) Explain different types of control valves d) Discuss the different components of Fluid power e) Explain the concept of stability	20	1 to 4	I,III, V	1.5.1
2 a	Enlist the different applications of Hydraulic and Pneumatic systems	10	2		1.6.1
2b	Draw the architecture of 8051 and explain the SFRs	10	2	VI	5.4.1
3 a	Draw and explain i) Clamping circuit using an accumulator, and ii) Sequencing circuit	10	1	III	1.6 .1
3b	Derive the steady state error and obtain the effect of all standard test inputs on steady state error and static error coefficients $K p, K v$ and Ka.	10	2	V	5.4.1
43	Develop a schematic and functional block diagram of temperature control system. Aim is to maintain hot water temperature constant. Water is coming with constant flow rate. Steam is coming from a valve. Pressure thermometer P is used as a feedback element, which sends signal comparison with set point. This error actuates the valve which controls the rate of flow of steam, eventually controlling the temperature of the water.	10	3	VI	1.6 .1
4b	Reduce the Block diagram and obtain the transfer function	10	3	III	5,4.1

End Sem - DEC 2022 Examinations

Program: B.Tech

$$
\pi \cdot u \cdot \Delta \cdot \operatorname{sen}(m) \text { v }
$$ tenn Course Code: PC-BTM514 Course Name: Thermal Systems

Duration: 3 Hours

 Maximum Points: 100 Semester: V Notes:1. Question number ONE is compulsory and solve any FOUR questions out of remaining SIX.
2. Steam table and Mollier diagram is allowed to use.
3. All sub questions to be grouped together.
4. Assume suitable data wherever necessary and justify the same.

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations - December 2022

3(a)	Draw neat sketches of root blower and vane-type blower and explain the working of these compressors in detail. Also write equation for work done.	10	3	1	2
(b)	What are boiler accessories? Draw a neat sketch of economiser and air preheater and explain its working.	10	1	1	3
4(a)	Draw neat sketch of Babcock-Wilox boiler and explain its working in detail.	10	1	1	3
(b)	Superheated steam at a pressure of 10 bars and $300^{\circ} \mathrm{C}$ enters a convergent divergent nozzle and leaves at 1.0 bar absolute. If the flow is isentropic and corresponding expansion index is 1.3, find the ratio of cross-sectional area at exit and throat for maximum discharge.	10	4	3	5
5(a)	Draw neat sketch of evaporative condenser and explain its working in detail.	10	3	2	4
(b)	Prove that condition for maximum blade efficiency of a reaction turbine is given by relation: $\eta_{\mathrm{b}}=\frac{2 \cos ^{2} \alpha}{1+\cos ^{2} \alpha}$	10	3	2	5
6(a)	The following data refer to one stage of an impulse turbine: Isentropic nozzle heat drop $=185 \mathrm{~kJ} / \mathrm{kg}$ Reheat of steam due to blade friction $=10 \%$ of isentropic drop. Nozzle angle $=20^{\circ}$ Ratio of blade speed to whirl component of steam speed $=0.5$. Velocity coefficient for the blades $=0.95$. Take this velocity of steam at the entry of nozzle $=30 \mathrm{~m} / \mathrm{sec}$. Evaluate: (a) Blade angle if the steam leaves axially, (b) Work done per kg, (c) Friction loss over the blades and K.E. loss.	10	4	3	5
(b)	Draw neat sketches of schematic and T-s diagram for regeneration and reheating for open cycle gas turbine and explain it in detail.	10	3	2	6
7(a)	The pressure ratio of an open cycle constant pressure gas turbine plant is 6 . The temperature range of the plant is $15^{\circ} \mathrm{C}$ and $850^{\circ} \mathrm{C}$. Using the following data: $\begin{aligned} & \mathrm{C}_{\mathrm{pa}}=1 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\ & \mathrm{C}_{\mathrm{pg}}=1.075 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \end{aligned}$ and $\gamma=1.4$ for air and gases C.V. of fuel $=43000 \mathrm{~kJ} / \mathrm{kg}$	12	4	3	6

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examinations - December 2022

	$\eta_{\mathrm{c}}=0.85, \eta_{\mathrm{t}}=0.90, \eta_{\text {com }}($ Combustion $)=0.95$. Estimate: (a) The thermal efficiency of the plant (b) I.P. of the plant if the circulation of air is $5 \mathrm{~kg} / \mathrm{sec}$ (c) A:F ratio, and (d) Specific fuel consumption. Neglect the losses in the system.			
	Explain the working of Kaplan turbine with neat sketch.	08	3	1
(b)			7	

END SEMESTER EXAMINATION DECEMBER 2022

Program: B. Tech. Mechanical Engg.
Course Code: PC-BTM512
Course Name: Dynamics of Machinery
Notes: 1. Attempt any FIVE questions
2. Each questions carry equal marks
3. Assume suitable data wherever necessary and justify the same

END SEMESTER EXAMINATION DECEMBER 2022

	speed of $72 \mathrm{~km} / \mathrm{hr}$.				
3	a) Describe and Sketch the arrangement for Watt governor. b) In a proell governor, the mass of each ball is 8 kg and the mass of the sleeve 120 kg . Each arm is 180 mm long. The length of extension of lower arm to which the balls are attached is 80 mm . The distance of pivots of arms from axis of rotation is 30 mm and the radius of rotation of the balls is 160 mm when the arms are inclined at 40° to the axis of rotation. Determine: (i) The equilibrium speed (ii) The coefficient of insensitiveness if the friction of the mechanism is equivalent to 30 N . (iii) The range of speed when the governor is inoperative.	$\left.\right\|^{06}$	1	3	3
4	a) Define the following terms: I. Angle of Obliquity II. Module III. Circular Pitch b) An epicyclic gear consists of three gears A, B and C as shown in Fig. The gear A has 72 internal teeth and gear C has 32 external teeth. The gear B meshes with both A and C and is carried on an arm EF which rotates about the centre of A at 18 rpm . If the gear A is fixed, determine the speed of gears B and C.	06	1	3	8

END SEMESTER EXAMINATION DECEMBER 2022

\begin{tabular}{|c|c|c|c|c|c|}
\hline 5 \& \begin{tabular}{l}
a) Find the natural frequency of the system shown in Figure. Given \(\mathrm{k}_{1}=\mathrm{k}_{2}=3 \times 10^{5} \mathrm{~N} / \mathrm{m}\), \(\mathrm{m}=150 \mathrm{~kg}, \mathrm{E}=210 \mathrm{GN} / \mathrm{m}^{2}, \mathrm{I}=4 \times 10^{-5} \mathrm{~m}^{4}\). \\
b) A spring mass system has spring stiffness of \(K\) \(\mathrm{N} / \mathrm{m}\) and mass of mkg . The natural frequency of system is 12 Hz . When an extra 2 kg mass is coupled to m , the natural frequency reduces by 2 Hz . Find the value of \(k\) and \(m\).
\end{tabular} \& 10
\[
10
\] \& 3 \& 2,3 \& 5 \\
\hline 6 \& \begin{tabular}{l}
a) Differentiate between Viscous and Coulomb damping. \\
b) Derive an expression for Logarithmic Decrement. \\
c) Explain and Derive the expression for Over damped and Critically damped system.
\end{tabular} \& 05
05
10 \& 4 \& 2,3 \& 6 \\
\hline 7 \& \begin{tabular}{l}
a) A rotating shaft carries four unbalanced masses \(18 \mathrm{~kg}, 14 \mathrm{~kg}, 16 \mathrm{~kg}\) and 12 kg at radii 5 \(\mathrm{cm}, 6 \mathrm{~cm}, 7 \mathrm{~cm}\) and 6 cm respectively. The \(2^{\text {nd }}, 3^{\text {rd }}\) and \(4^{\text {th }}\) masses revolve in planes 8 cm , 16 cm and 28 cm respectively measured from the plane of the first mass and are angularly located at \(60^{\circ}, 135^{\circ}\) and \(270^{\circ}\) respectively measured anticlockwise from the first mass looking from this mass end of the shaft. The shaft is dynamically balanced by two masses, both located at 5 cm radii and revolving in planes midway between those of \(1^{\text {st }}\) and \(2^{\text {nd }}\) masses and midway between those of \(3^{\text {rd }}\) and \(4^{\text {th }}\) masses. Determine the magnitude of the masses and their respective angular positions. \\
b) Explain balancing of four cylinder four stroke in line engine.
\end{tabular} \& 12

08 \& \& 3 \& 7

\hline
\end{tabular}

End Semester Examination December－2022

Program：B．Tectr Mechanical Engineering
Class：Third Year B．Tech．（Mechanical） Lcm Course Code：PC－BTM501
Course Name：Heat and Mass Transfer

Date：16／12／2022
Duration： 3 hours
Maximum Points：100
Semester：V

Instructions：

1．Q． 1 is COMPULSORY．Solve any Four questions out of remaining Six．
2．Use of heat exchanger data is allowed．
3．Use of Reference Data for Properties of fluids，Convective heat transfer correlations and Heisler Charts duly approved by examiner is permitted．
4．Draw neat sketches wherever required．
5．Answers to theory questions should be specific and in legible handwriting．

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Questions	搌	8	苗	亚
1	Solve any four out of following questions： （a）State and explain Fourier＇s law of one dimensional heat conduction． What are the assumptions to be considered for this law？ （b）State the examples of mass transfer in day to day life and industrial applications． （c）State and explain Fick＇s law of diffusion and compare it with Fourier＇s law of heat conduction． （d）Explain with significance：Biot No．（Bi）and Fourier No．（Fo）． Differentiate：Nusselt No．（ Nu ）from Bi． （e）Explain：Thermal boundary layer thickness and significance of Prandtl No．（ Pr ）in deciding relation between hydrodynamic and thermal boundary layer． （f）Define：Irradiation（ G ）and Hence Prove：$a+\rho+\tau=1$ ，defining the terms involved in the equation．	20	1，2	1，2，3	$\begin{aligned} & 1,6,7 \\ & 3,4,5 \end{aligned}$
2（a）	Two slabs，each 120 mm thick，have thermal conductivities of $14.5 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ and $210 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$ ．These are placed in contact，but due to roughness，only 30 percent of area is in contact and the gap in the remaining area is 0.025 mm thick and is filled with air．If the temperature of the face of the hot surface is at $220^{\circ} \mathrm{C}$ and the outside side surface of other slab is at $30^{\circ} \mathrm{C}$ ．Evaluate：				

(Government Aided Autonomous Institute)
Munshi Nagar. Andheri (W) Mumbai - 400058
End Semester Examination December -2022

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& \begin{tabular}{l}
(i) Heat flow through the composite system \\
(ii) The contact resistance and temperature drop in contact. Assume that the conductivity of air is \(0.032 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}\) and that half of the contact (of the contact area) is due to either metal.
\end{tabular} \& 10 \& 4 \& 1,2,3 \& 2 \\
\hline 2(b) \& \begin{tabular}{l}
A steam pipe (\(k=45 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}\)) having 70 mm inside diameter and 85 mm outside diameter is lagged with two insulation layers; the layer in contact with the pipe is 35 mm asbestos \(\left(\mathrm{k}=0.15 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)\) and is covered with 25 mm thick magnesia insulation (\(k=0.075 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\)). The heat transfer coefficients for inside and outside surfaces are \(220 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\) and \(6.5 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\) respectively. If the temperature of steam is \(350^{\circ} \mathrm{C}\) and the ambient temperature is \(30^{\circ} \mathrm{C}\). Estimate \\
(i) The steady loss of heat for 50 m length of the pipe. \\
(ii) The overall heat transfer coefficient based on inside and outside surfaces of the lagged steam main.
\end{tabular} \& 10 \& 4 \& 1,2,3 \& 2 \\
\hline 3(a) \& Derive an expression for LMTD of parallel flow heat exchanger. \& 10 \& 2 \& 1,2 \& 6 \\
\hline 3(b) \& \begin{tabular}{l}
A counter-flow heat exchanger, through which passes \(12.5 \mathrm{~kg} / \mathrm{s}\) of air to be cooled from \(540^{\circ} \mathrm{C}\) to \(146^{\circ} \mathrm{C}\), contains 4200 tubes, each having a diameter of 30 mm . The inlet and outlet temperatures of cooling water are \(25^{\circ} \mathrm{C}\) and \(75^{\circ} \mathrm{C}\) respectively. If the water side resistance to flow is negligible, calculate the tube length required for this duty. \\
For turbulent flow inside tubes : \(\mathrm{Nu}-0.023 \mathrm{Re}^{0.8} \mathrm{Pr} r^{0.4}\) \\
Properties of the air at the average temperature are as follows:
\[
\begin{aligned}
\& \rho=1.009 \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{c}_{\mathrm{p}}=1.0082 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C} ; \mu=2.075 \times 10^{-5} \mathrm{~kg} / \mathrm{ms}\left(\mathrm{Ns} / \mathrm{m}^{2}\right) \text { and } \mathrm{k}= \\
\& 3.003 \times 10^{-2} \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} \text {. }
\end{aligned}
\]
\end{tabular} \& 10 \& 2 \& 1,2

$1,2,3$ \& | 6 |
| :--- |
| 6 |

\hline 4(a) \& | In a gas turbine power plant heat is being transferred in a heat exchanger from the hot gases leaving the turbine at $450^{\circ} \mathrm{C}$ to the air leaving the compressor at $170^{\circ} \mathrm{C}$. The air flow rate is $5000 \mathrm{~kg} / \mathrm{h}$ and fuel-air ratio is $0.015 \mathrm{~kg} / \mathrm{kg}$. The overall heat transfer coefficient for the heat exchanger is $52.33 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$. The surface area is $50 \mathrm{~m}^{2}$ and arrangement is cross-flow (both fluids unmixed). Using NTU method estimate the followings: |
| :--- |
| (i) The exit temperature on the air and gas sides, and |
| (ii) The rate of heat transfer in the heat exchanger. |
| Take $\mathrm{c}_{\mathrm{ph}}=\mathrm{c}_{\mathrm{pc}}=1.05 \mathrm{~kJ} / \mathrm{kg}^{\circ} \mathrm{C}$. | \& 10 \& 4 \& 1,2,3 \& 6

\hline 4(b) \& Hydrogen gas at $25^{\circ} \mathrm{C}$ and 2.5 atmosphere flows through a rubber tubing of 12 mm inside radius and 24 mm outside radius. The binary diffusion coefficient of hydrogen is $2.1 \times 10^{-8} \mathrm{~m}^{2} / \mathrm{s}$ and the solubility of hydrogen is $0.055 \mathrm{~m}^{3}$ of rubber \& 5 \& 4 \& 1,2,3 \& 7

\hline
\end{tabular}

Page 2 of 4
(Government Aided Autononous Institute)
Munshi Nagar, Andheri (W) Mumbai- 400058
End Semester Examination December -2022

	at 1 atmosphere. If the gas constant for hydrogen is $4160 \mathrm{~J} / \mathrm{kg} \mathrm{K}$ and the concentration of hydrogen at the outer surface of tubing is negligible, calculate the diffusion flux rate of hydrogen per meter length of rubber tubing.				
4(c)	A spherical cylinder 3.5 m inner diameter, 40 mm thick, made of nickel, contains gas at 358 K . Molar concentration of hydrogen in Ni at the inner surface is $0.085 \mathrm{~kg} \mathrm{~mole} / \mathrm{m}^{3}$ and is zero at the outer surface. Determine the mass diffusion rate of hydrogen through the walls of the container. For $\mathrm{H}_{2}-\mathrm{Ni}$ at 358 K , take $\mathrm{D}_{\mathrm{H} 2-\mathrm{Ni}}=1.2 \times 10^{-12} \mathrm{~m}^{2} / \mathrm{s}$.	5	4	1,2,3	7
5(a)	Derive: Expression for temperature distribution in a solid (θ / θ_{i}) using lumped parameter analysis and Hence Prove: $\left(\theta / \theta_{i}\right)=\exp (-B i x F o)$. Draw: Neat sketch of the system and equivalent thermal circuit. A thermocouple junction is in the form a 8 mm diameter sphere. Thermophysical properties of material of thermocouple are $c=420 \mathrm{~J} / \mathrm{kg} . \mathrm{K}, \rho=8000 \mathrm{~kg} / \mathrm{m}^{3}, k=40 \mathrm{~W} / \mathrm{m} . \mathrm{K}, \mathrm{h}=$ $40 \mathrm{~W} / \mathrm{m}^{2} . K$. Determine: Time constant of thermocouple.	10	2	1,2,3	3
5(b)	State: Criteria of Bi value for analysis of transient heat conduction problems. A 50 mm thick iron plate is initially at $225^{\circ} \mathrm{C}$. In a quenching process, its both the surfaces are suddenly exposed to an environment of $25^{\circ} \mathrm{C}$ with the convective heat transfer coefficient of $500 \mathrm{~W} / \mathrm{m}^{2} . K$. Thermophysical properties of iron are $c=460 \mathrm{~J} / \mathrm{kg} . K, \rho=7850 \mathrm{~kg} / \mathrm{m}^{3}, k=60 \mathrm{~W} / \mathrm{m} . K$. Calculate: i) The centre temperature, 2 min after the start of the exposure. ii) Temperature at a depth of 10 mm from the surface of the plate, 2 min after the start of the exposure.	10	4	1,5	3
6(a)	Explain: Significance of Grashoff No. (Gr) and Rayleigh No. (Ra). A horizontal pipe carrying steam runs in a large room and is exposed to air at $30^{\circ} \mathrm{C}$. The pipe surface temperature is at $200^{\circ} \mathrm{C}$ and the outside diameter of pipe is 20 mm . Heat loss per meter length of the pipe is $1.9193 \mathrm{~kW} / \mathrm{m}$. Nusselt No. ($N u$) is given by McAdams correlation $\overline{N u}=0.53(R a)^{0.25}$. Take required properties of air at mean film temperature. Evaluate: i) Free Convective heat transfer rate from the pipe ii) Emissivity of the pipe surface.	10	3,4	2,5	4,5
6(b)	Define equivalent diameter $\left(D_{e}\right)$. State: Formula of D_{e} for hollow pipe of inside and outside diameter d and D respectively. A metallic bus bar 25 mm diameter is cooled by turbulent flow of air at $30^{\circ} \mathrm{C}$ cross flowing past the bus bar with a velocity of $2.5 \mathrm{~m} / \mathrm{s}$. The surface temperature of the bus bar is $85^{\circ} \mathrm{C}$. Nusselt No. $(N u)$ is given by correlation $\overline{N u}=C \cdot R^{n} \operatorname{Pr}^{1 / 3}$ for turbulent flow over cylinder where; values of C and n are selected from below as: i) $C=0.683 ; n=0.466$ for $40<R e<4 \times 10^{3}$ ii) $C=0.683 ; n=0.466$ for $4 \times 10^{3}<R e<4 \times 10^{4}$	10	4	2,5	4

Page 3 of 4
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058
End Semester Examination December - 2022

	Take required properties of air at mean film temperature. Evaluate: Heat dissipation rate for 1 m length of the bar.				
7(b)	State: The following laws of radiation and Express: Mathematical equation/s for each of them. i) Stefan-Boltzmann Law ii) Kirchoff's Law iii) Wien's Displacement Law iv) Lambert's Cosine Law	10	3	1,2	5
7(b)	For an industrial furnace in the form of a black body emitting radiations at 2500 at which emission is maximum iii) Maximum emissive power iv). Total emissive power v) Intensity of normal radiation	10	3	5	5

1. Question No. 1 is compulsory
2. Solve any four out of remaining six.
3. Answers to each sub-questions are grouped together
4. Use of scientific calculator is allowed
5. Begin answer to each question on new page.
6. Keep some margin on left side of answer paper
7. Candidates should write the answer legibly (Refer clause 13)

BharatiyaVidyaBhavan's
(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai - 400058

END SEMESTER EXAMINATION DECEMBER 2022

Program: T.Y. B. Tech. (Mechanical Ing.)
Course Code: PE-BTM552
Course Name: Hydraulic Machinery

Duration: 3 Hrs
Maximum Points: 100
Semester: V

Notes: (1) Q. 1, 2 and 3 are compulsory
(2) Attempt any two questions from Q. 4 to Q.7.
(2) Draw labeled sketches to justify answer.
(3) Clear and readable handwriting is expected.

1

END SEMESTER EXAMINATION DECEMBER 2022

Page 2 of 3

Bharatiya Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autononous Institute)
Munshi Nagar, Andheri (W) Mumbai- 400058

END SEMESTER EXAMINATION DECEMBER 2022

END SEMESTER EXAMINATION, DECEMBER 2022

B.Tech. (Mechamicat Engimeering) Senester = V - Duration: Three Hour

Course: COMPRESSIBLE FLUID FLOW (PE BTM 554)
Maximum Points :100

Notes

- Answer any FIVE from seven questions,
- Answers to all sub questions should be grouped together for evaluation,
- Make suitable assumption if needed with proper reasoning,
- Data shown under column CO, BL and PI are only for academic evaluation
(CO: Course Outcome, BL: Blooms Taxonomy, PI: Performance Indicator)
Points CO BL
(A) Examine the characteristic features of compressible low and identify its basic equations? Write them in their mathematical form.
(B) For flow through a variable area duct, prove that

$$
\frac{d V}{V}=\frac{d A}{A} \frac{1}{\left[1-M^{2}\right]}
$$

Analyze and explain the expression with their physical meaning.
2. (A) Differentiate between following.
i) Compressible and Incompressible,
ii) Subsonic and Supersonic,
iii) Stagnation state and actual state of fluid flow.
iv) Normal and oblique shock wave
(B) Define Mach number and critical state of a compressible flow.

Derive an expression for the sonic velocity in an arbitrary fluid. Is there any effect of pressure on the sonic velocity?
(A) What are the two benchmark state to describe the properties of a compressible flow?
Derive expressions for the following properties of a flow with Mach number M, in terms of both benchmark states-Pressure, Temperature and Density.
(B) Air flows steadily through the duct shown from 350 kPa (abs), $60^{\circ} \mathrm{C}$, and 183 m / s at the inlet state to $\mathrm{M}=5$ at the outlet, where local isentropic stagnation conditions are known to be 385 kPa (abs) and 350 K . Compute the local isentropic stagnation pressure and temperature at the inlet and the static pressure and temperature at the duct outlet. Locate the iniet and outlet static state points on a Ts diagram, and indicate the stagnation processes.
4. (A) Consider a normal shock exist in a one dimensional gas flow. What is the effect of normal shock on following properties (increase/decrease)?
Stagnation pressure and temperature, actual pressure and temperature, entropy, velocity and density. Justify your answer.
(B) A normal shock stands in a duct. The fluid is air, which may be considered an ideal gas. Properties upstream from the shock are $\mathrm{T}_{1}=5^{\circ} \mathrm{C}, \mathrm{pl}_{1}=65.0 \mathrm{kPa}$ (abs.), and $\mathrm{V}=668 \mathrm{~m} / \mathrm{s}$. Determine properties downstream and $\mathrm{s}_{2}-\mathrm{s}_{1}$. Sketch the process on a Ts diagram. (Use Gas Table)
5. (A) What do you understand by a chocked flow? When does it happens?

Explain isentropic flow through a converging nozzle for variable back flow pressure condition: Represent the variation along the nozzle length.
(B) Air flows isentropically in a channel. At section 1 the Mach number is 0.3 , the area is $0.001 \mathrm{~mm}^{2}$, and the-absolute pressure and the temperature are 650 kPa and $62^{\circ} \mathrm{C}$, respectively. At section 2, the Mach number is 0.8 . Sketch the channel shape, plot a T-s diagram for the process, and evaluate properties at section 2.
6 (A) Discuss Rayleigh Flow. List down all governing equation required to characterize this flow. Represent it on a Ts diagram and explain its unique feature.
(B) What is a supersonic wind tunnel? What'special features does it has compared to subsonic wing tunnels?
Explain different types of supersonic wind tunnels with appropriate schematic diagram and discuss their workings.
7. (A) What is Fanno flow? Sketch Fanno line on an appropriate property diagram and explain it. Discuss the effect of Fanno flow on following properties: Pressure, temperature, density, enthalpy and velocity of flow.
(B) A long pine of 25.4 mm diameter has a mean coefficient of friction of 0.003 . Air enters the pipe at a Mach number of 2.5 , stagnation temperature 310 K and static pressure 0.507 bar. Determine for a section at which the Mach number reaches 1.2 (Use Gas Table);
(a) static pressure and temperature
(b) stagnation pressure and temperature
(c) velocity of air
(d) distance of section from the inlet, and
(e) mass flow rate of the air
$\left[\begin{array}{lll}10 & 1.3 & 1.2\end{array}\right.$
[10] 3 4,5
$\left[\begin{array}{lll}{[10]} & 1,3 & 2.4\end{array}\right.$
[10] 2.3 1.3. 5
[10]
1.2

[10]
$3.4 \quad 3,4$

TABLE 4.2
Normal shocks in perfect gases ($\gamma=1.4$)

M_{x}	M_{y}	p_{v} / p_{x}	T_{4} / T_{*}	$p_{0 y} / p_{0 x}$	$p_{0 y} / p_{x}$
1.00	1.000	1.000	1.000	1.000	1.893
1.02	0.981	1.047	1.013	0.999	1.938
1.04	0.962	1.095	1.026	0.999	1.984
1.06	0.945	1.144	1.039	0.999	2.032
1.08	0.928	1.194	1.052	0.999	2.082
1.10	0.911	1.245	1.065	0.998	2.133
1.12	0.897	1.297	1.078	0.998	2.185
1.14	0.882	1.349	1.090	$0 . .997$	2.238
1.16	0.868	1.403	1.103	0.996	2.294
1.18	0.855	1.458	1.115	0.994	2.350
1.20	0.842	1.513	1.128	0.993	2.407
1.22	0.830	1.570	1.141	0.991	2.466
1.24	0.818	1.627	1.153	0.988	2.526
1.26	0.807	1.685	1.166	0.985	2.587
1.28	0.796	1.745	1.178	0.983	2.650
1.30	0.786	1.805	1.191	0.979	2.714
1.32	0.776	1.866	1.204	0.976	2778
1.34	0.766	1.928	1.216	0.972	2.845
1.36	0.757	1.991	1.229	0.967	2.911
1.38	0.748	2.055	1.242	0.963	2.979
1.40	0.740	2.120	1.255	0.958	3.049
1.42	0.731	2.186	1.267	0.953	3.120
1.44	0.723	2.253	1.281	0.947	3.192
1.46	0.716	2.320	1.294	0.942	3.265
1.48	0.708	2.389	1.307	0.936	3.338
1.50	0.701	2.458	1.320	0.930	3.413
152	0.694	2.529	1.334	0.923	3.489
1.54	0.687	2.600	1.347	0.917	3.567
1.56	0.681	2.673	1.361	0.909	3.645
1.58	0.675	2.746	1.374	0.903	3.725
1.60	0.668	2.820	1.388	0.895	3.805

TABLE 4.2

Normal shocks in perfect gases ($\gamma=1.4$)

M_{x}	- M_{y}	$-p_{y} / p_{x}$	T_{y} / T_{x}	$p_{\theta y} / P_{\text {dr }}$	p_{0} / p^{\prime}
1.62	0.663	2.895	1.402	0.887	3.886
1.64	0.657	2.971	1.416	0.880	3.969
1.66	0.651	3.048	1.430	0.872	4.053
1.68	0.646	3.126	1.444	0.864	4.138
1.70	0.641	3.205	1.458	0.856	4.224
1.72	0.635	3.285	1.473	0.847	4.315
1.74	0.631	3.336	1.487	0.839	4.443
1.76	0.626	3.447	1.502	0.830	4.533
1.78	0.621	3.530	1.517	0.822	4.578
1.80	0.616	3.613	1.532	0.813	4.670
1.82	0.612	3.698	1.547	0.804	4.762
1.84	0.608	3.781	1.562	0:795	4.855
1:86.	0.604	3870	1.578	0.786	4.947
1.88	0.599	3.957	1.593	0.776	5.043
1.90	0.596	4.045	1.608	0.767	5.142
1.92	0.592	4.134	1.624	0.758	5.239
1.94	0.588	4.224	1.639	0.749	5.338
1.96	0.584	4.315	1.656	0.739	5.438
1.98	0.581	4.407	1.671	0.730	5.538
2.00	0.577	4.500	1.687	0.722	5.641
2.02	0.574	4.594	1.704	0.712	5.743
2.04	0.571	4.688	1.720	0.702	5.847
2.06	0.567	4.784	1.737	0.693	5.953
2.08	0.564	4.881	1.754	0.684	6.058
2.10	0.561	4.978	1.770	0.674	6.166
2.12	0.558	-5.977	1.787	0.665	6.274
2.14	0.556	5.176	1.805	0.656	6.383
2.16	0.553	5.276	1.822	0.646	6.493
2.18	0.550	5.378	1.839	0.637	6.604
2.20	0.547	5.480	1.857	0.628	6.716

TABLE 4.2
Normal shocks in perfect gases ($\gamma=1.4$)

H_{r}	M_{y}	p_{r} / p_{x}	$T_{:} / T_{X}$	$p_{0,1} p_{t i x}$	$p_{i j y} / p_{x}$
2.22	0.545	5.583	1875	0.619	6.829
2.24	0.542	5.687	1.892	0.610	6.945
2.26	0.539	5.792	1.910	0.60 l	7.060
2.28	0.537	5.898	1.928	0.592	7.176
2.30	0.534	6.005	1.947	0.583	7.294
2.32	0.532	6.113	1.965	0.574	7.412
2.34	0.529	6.222	1.984	0.566	7.532
2.36	0.527	6.331	2.003	0.557	7.653
2.38	0.525	6.442	2.021	0.548	7.775
2.40	0.523	6.553	2.040	0.540	7.897
2.42	0.521	6.666	2.059	0.532	8.027
2.44	0.519	6.780	2.079	0.523	8.145
2.46	0.517	6.894	2.098	0.515	8.271
2.48	0.515	7.008	2.118	0.507	8.398
2.50	0.513	7.125	2.138	0.499	8.526
2.52	0.514	7.242	2.157	0.491	8.655
2.54	0.509	7.360	2.177	0.483	8.785
2.56	0.507	7.479	2.197	0.475	8.916
2.58	0.506	7.599	2.218	0.467	9.145
2.60	0.504	7.720	2.238	0.460	9.181
2.62	0.502	7.842	2.259	0.453	9.315
2.64	0.500	7.965	2.279	0.445	9.451
2.66	0.498	8.088	2.300	0.438	9.587
2.68	0.497	8.213	2.322	0.43 !	9.724
2.70	0.496	8.338	2.343	0.423	9.863
2.72	0.494	8.465	2.364	0.416	10.002
2.74	0.493	8.592	2.386	0.409	10.142
2.76	0.491	8.721	2.407	0.403	10.283
2.78	0.490	8.849	2.429	0.396	10.426
2.80	0.488	8.980	2.451	0.389	10.569

TABLE 4.2
Normal shocks in perfect gases ($\gamma=1.4$)

M_{r}	M	p_{4} / p_{x}	T_{i} / T_{x}	$p_{09} / p_{0 x}$	$p_{o_{y}} / p_{x}$
2.82	0.487	9.111	2.473	0.383	10.714
2.84	0.485	9.243	2.495	0.376	10.859
2.86	0.484	9.376	2.518	0.370	11.006
2.88	0.483	9.510	2.540	0.364	11.154
2.90	0.481	9.645	2.563	0.358	11.302
2.92	0.480	9.781	2.586	0.352	11.452
2.94	0.478	9.917	2.609	0.346	11.603
2.96	0.477	10.055	2.632	0.339	11.754
2.98	0.476	10.194	2.656	0.334	11.907
3.00	0.475	10.333	2.679	0.328	12.061
3.05	0.472	10.686	2.738	0.315	12.450
3.10	0.469	11.045	2.798	0.301	12.846
3.15	0.467	11.409	2.860	0.288	13.247
3.20	0.464	11.780	2.922	0.276	13.656
3.25	0.462	12.156	2.985	0.264	14.071
3.30	0.459	12.538	3.049	0.253	14.492
3.35	0.457	12.926	3.114	0.243	14.920
3.40	0.455	13.320	3180	0.232	15.354
3.54	0.453	13.791	3.247	0.222	15.795
3.50	0.451	14.125	3.315	0.213	16.242
3.55	0.449	14.536	3.38 .4	0.204	16.700
3.60	0.447	14.953	3.454	0.195	17.156
3.65	0.445	15.376	3.525	0.187	17.715
3.70	0.444	15.805	3.596	0.179	18.095
3.75	0.442	16.239	3.669	0.172	18.575
3.80	0.44 F	16.680	3.743	0.164	19.060
3.85	0.439	17.126	3.817	0.157	19.553
3.90	0.438	17.578	3.893	0.151	20.051
3.95	0.436	18.036	3.969	0.145	26.556
4.00	0435	18.500	4.047	0.138	21.068

TABLE 4.2
Normal shocks in perfect gases ($\gamma-1.4$)

M_{x}	M_{v}	$p_{y} i p_{x}$	\dot{T}_{y} / T_{s}	$p_{0 y} / p_{0 x}$	$p_{0 y} / p_{x}$
4.05	0.434	18.969	4.125	0.133	21.586
4.10	0.432	19.445	4.205	0.127	22.111
4.15	0.431	19.926	4.285	0.122	22.642
4.20	0.430	20.413	4.367	0.117	23.179
4.25	0.429	20.906	4.449	0.113	23.723
4.30	0.428	21.405	4.532	0.108	24.273
4.35	0.427	21.909	4.616	0.104	24.829
4.40	0.426	22.420	4.702	0.099	25.393
4.45	0.425	22.936	4.788	0.095	26.078
4.50	0.424	23.458	4.875	0.0917	26.539
4.55	0.423	23.986	4.963	0.088	27.120
4.60	0.422	24.520	5.052	0.085	27.710
4.65	0.421	25.059	5.142	0.081	28.305
4.70	0.420	25.605	5.233	0.078	28.907
4.75	0.419	26.156	5.325	0.075	29.516
4.80	0.418	26.713	5.418	0.072	30.130
4.85	0.417	27.276	5.512	0.069	30.751
4.90	0.4167	27.845	5.607	0.067	31.379
495	1. 416	28.419	5.703	0.0642	32.013
5.00	0.415	29.000	5.800	0.0617	32.654
6.00	0.404	41.833	7.941	0.0296	46.815
7.00	0.397	57.000	10.469	0.0154	63.552
8.00	0.393	74.500	13.387	0.0085	82.865
9.00	0.389	94.333	16.693	0.005	104.753
10.000	0.388	116.500	20.388	0.003	129.217
∞	0.378	∞	∞	0	∞

TABLE 6.2
Flow of perfect gases with friction (Fanno frow, $\bar{\gamma}=1.4$)

M	$p \prime p^{*}$	$c / c^{*}=\rho^{*} / \rho$	T / T^{*}	$p_{0} / p_{0}{ }^{*}$	F / F^{*}	$4 \bar{f} E_{\text {max }} / D$
0.02	54.770	0.022	1.199	28.942	22.834	1778.450
0.04	27.382	0.044	1.199	14.482	11.435	440.352
0.06	18.251	0.066	1.199	9.666	7.643	193.031
0.08	13.684	0.087	1.198	7.262	5.753	106.718
0.10	10.943	0.109	1.197	5.822	4.624	66.922
0.12	9.116	0.131	1.196	4.864	3.875	45.407
0.14	7.809	0.153	1.195	4.183	3.343	32.511
0.16	6.830	0.175	1.194	3.673	2.950	24.197
0.18	6.067	0.196	1.192	3.278	2.643	18.543
0.20	5.455	0.218	1.190	2.964	2.400	14.533
0.22	4.955	0.239	1.188	2.708	2.205	11.596
0.24	4.538	0.261	1.186	2.496	2.043	9.387
0.26	4.185	0.283	1.184	2.317	1.909	7.687
0.28	3.882	0.304	1.181	2.166	1.795	6.357
0.30	3.619	0.326	1.178	2.035	1.698	5.299
0.32	3.388	0.347	1.176	1.927	1.615	4.4 .47
0.34	3185	0.368	1.172	1823	1.542	3.752
0.36	3.004	0.389	1.169	1.736	1.479	3.180
0.38	2.842	0.410	1.166	1.658	1.423	2.705
0.40	2.695	0.431	1. 163	1.590	1.375	2.308
0.12	2.563	0.452	1.159	1529	1.332	1.974
0.44	2.442	0.473	1.155	1.474	1.294	1.692
0.46	2.333	0.494	1.151	1.425	1.260	1.451
0.48	2.231	0.514	1.147	1.380	1.230	1.245
0.50	2.138	0.534	1.143	1.340	1.203	1.069
0.52	2.052	0.555	1.138	1.303	1.179	0.917
0.54	1.972	0.575	1.134	1.270	1.157	0.787
0.56	1.897	0.595	1.129	1.240	1.138	0.674
0.58	1.828	0.615	1.124	1.213	1.120	0.575
0.60	1.763	0.635	1.119	1.188	1.105	0.491

TABLE 6.2
Flow of perfect gases with friction (Fanno flow, $\gamma=1.4$)

M	$p p^{*}$	$c / c^{*}=p^{*} / p$	$T T T^{*}$	$p_{0}{ }^{\prime} p_{0}{ }^{*}$	F/F*	$4 \bar{f} L_{\text {mixi }} / D$
0.62	1.703	0.654	1.114	1.166	1.092	0.417
0.64	1.645	0.674	.1.109	1.145	1.079	0.353
0.66	1.592	0.693	1.104	1.127	1.068	0.298
0.68	1.541	0.713	1.098	1.109	1.058	0.249
0.70	1.493	0.732	¢.093	1.094	1.049	0.208
0.72	1.448	0.751	1.087	1.081	1.041	0.172
0.74	1.405	0.770	1.082	1.068	1.035	0.141
0.76	1.365	0.788	1.076	1.057	1.028	0.114
0.78	1.326	0.807	1.069	1.047	1.023	0.092
0.80	1289	0.825	1.16%	i. 038	1.018	0.073
0.82	1.254	0.843	1.058	1.031	1.015	0.056
0.84	1.221	0.861	1.051	1.024	1.011	0.042
0.86	1.189	0.879	1.045	1.018	\$.008	0.031
0.88	1.158	0.897	1.039	1.013	1.006	0.022
0.90	1.129	0.915	1.003	1.009	1.004	0.015
0.92	1.101	0.932	1.026	1.006	1.003	0.0089
0.94	1.074	0.949	1.020	1.003	1.001	0.005
0.96	1.048	0.966	1.013	1.001	1.0006	0.0020
0.98	1.024	0.983	1.006	1.0003	1.0001	0.0005
1.00	1.000	1.000	1.000	1.000	1.000	0.000
1.02	0.977	1.016	0.993	1.0003	1.0001	0.00046
1.04	0.955	1.033	0.986	1.0013	1.0005	0.0018
1.06	0.933	1.049	0.979	1.003	1.0012	0.004
1.08	0.913	1.065	0.973	1.005	1.002	0.0066
1.10	0.894	1.081	0.966	1.008	1.003	0.0099
1.12	0.875	1.097	0.959	1.01]	1.004	0.0138
1.14	0.856	1. 113	0.952	1.015	1.006	0.0182
1.16	0.838	1.128	0.945	1.020	1.007	0.023
1.18	0.821	1.143	0.938	1.025	1.009	0.028
1.20	0.804	1.158	0.932	1.030	1.041	0.034

TABLE 6.2
Flow of perfect gases with friction (Fanno flow, $\gamma=1.4$)

M	p / p^{*}	$c / c^{*}-\rho^{*} / \mathrm{p}$	T / T^{*}	$p_{\theta} / p_{\theta}{ }^{*}$	F/F*	$4 \bar{f} L_{\text {max }} / D$
1.22	0.788	1.173	0.925	1.037	1.013	0.039
1.24	0.773	1.188	0.918	1.043	1.055	0.045
1.26	0.757	1.202	0.911	1.050	1.017	0.0517
1.28	0.743	1.217	0.903	1.058	1.019	0.0582
1.30	0.728	1.231	0.897	1.066	1.022	0.065
132	0.715	1.245	0.889	1.075	1.024	0.0716
1.34	0.701	1.259	0.883	1.084	1.027	0.0785
1.36	0.688	1.273	0.876	1.094	1.029	0.0855
1.38	0.676	1.286	0.869	1.104	1.032	0.093
1.40	0.663	1.300	0.862	11.5	1.035	0.099
1.42	0.651	1.313	0.855	1.126	1.037	0.107
1.44	0.640	1.326	0.848	1.138	1.040	0.114
1.46	0.628	1.339	0.841	1150	1.043	$0.12!$
1.48	0.617	1.352	0.834	1.163	1.046	0.128
1.50	0.606	1.364	0.828	1.176	1.048	0.136
1.52	0.596	1.377	0.821	1.189	1.052	0.143
1.54	0.586	1.389	0.814	1.204	1.055	0.15 it
1.56	0.576	1.401	0.807	1.219	1.057	0.158
1.58	0.566	1.413	0.800	1.234	1.061	0.165
1.60	0.557	1.425	0.794	1.250	1.063	0.172
1.62	0.547	1.437	0.787	1.267	1.067	0.179
1.64	0.538	1.448	0.780	1.284	1.069	0.187
1.66	0.529	1.460	0.774	1.301	1.073	0.194
1.68	0.521	1.471	0.767	1.319	1.075	0.201
1.70	0.513	1.482	0.760	1.340	1.078	0.208
1.72	0.505	1.493	0.754	1.357	1.082	0.215
1.74	0.496	1.504	0.747	1.376	1.085	0.222
1.76	0.489	1.515	0.741	1.397	1.088	0.228
1.78	0.481	1.525	0.735	1.418	1.091	0.235
1.80	0.474	1.536	0.728	1.439	1.093	0.242

TABLE 6.2
Flow of perfect gases with friction (Fanno flow, $\gamma=1.4$)

M	$p i p *$	$c^{\prime} c^{*}=\rho^{*} / \rho$	$T T^{*}$	$p_{0,}{ }^{\prime} p_{0}{ }^{*}$	F / F^{*}	$4 \bar{f} L_{\text {max }} / D$
1.82	0.467	1.546	0.722	1.461	1.096	0.248
1.84	0.459	1.556	0.716	1.484	1.099	0.255
1.86	0.453	1.566	0.709	1.507	1.102	0.262
1.88	0.446	1.576	0.703	1.530	1.105	0.268
1.90	0.439	1.586	0.697	1.555	1.108	0.274
1.92	0.433	1.596	0.691	1.580	1.111	0.281
1.94	0.426	1.605	0.685	1.610	1.114	0.287
1.96	0.420	1.615	0.678	1.633	1.117	0.293
1.99	0.414	1.624	0.673	1.660	1.120	0.299
2.00	0.408	1.633	0.667	1.687	1.123	0.305
2.02	0.402	1.642	0.661	1.716	1.126	0.311
2.04	0.397	1.651	0.655	1.747	1.128	0.317
2.06	0.391	1.659	0.649	1.775	1.131	0.323
2.08	0.386	1.668	0.643	1.806	1.134	0.328
2.10	0.380	1.677	0.637	1.837	1.137	0.334
3.12	0.375	1.685	0.632	1.870	1.139	0.339
2.14	0.369	1.694	0.623	1.902	1.142	0.345
2.16	0.365	1.702	0.621	1.935	1.145	0.350
2.18	0.359	1.710	0.615	1.970	1.147	0.356
2.20	0.355	1.718	0.609	2.005	1.150	0.361
2.22	0.350	1.726	0.604	2.041	1.153	0.366
2.24	0.346	1.733	0.598	2.078	1.155	0.371
2.26	0.341	1.741	0.594	2.115	1.158	0.376
2.28	0.336	1.748	0.588	2.154	1.160	0.381
2.30	0.332	1.756	0.583	2.193	1.163	0.386
2.32	0.327	1.764	0.578	2.233	1.165	0.391
2.34	0.323	1.771	0.573	2.274	1.168	0.396
2.36	0.319	1.778	0.567	2.316	1.170	0.400
2.38	0.315	1.785	0.563	2.360	1.173	0.405
2.40	0.311	1.792	0.557	2.403	1.175	0.409

TABLE 6.2
Flow of perfect gases with friction (Fanno flow, $\gamma=1.4$)

M	$p p^{*}$	$c i c^{*}-p^{*} / p$	T / T^{*}	$p_{\theta} / p_{0}{ }^{*}$	F / F^{*}	$4 \bar{f} L_{\text {maxa }} / D$
2.42	0.307	1.799	0.553	2.448	1.178	0.414
2.44	0.303	1.806	0.548	2.494	1.179	0.419
2.46	0.299	1.813	0.543	2.540	1.182	0.423
2.48	0.296	1.819	0.538	2.588	1.185	0.427
2.50	0.292	1.826	0.533	2.637	1.187	0.432
252	0.289	1.832	0.528	2.687	1.189	0.436
2.54	0.285	1.838	0.524	2.737	1.191	0.440
2.56	0.281	1.845	0.519	2.789	1.193	0.445
2.58	0.278	1.851	0.515	2.842	1.195	0.448
2.60	0.275	1.857	0.510	2.896	1.198	0.453
2.62	0.271	1.863	0.506	2.951	1.200	0.457
2.64	0.268	1.869	0.501	3.007	1.202	0.460
2.66	0.265	1.875	0.497	3.065	1.204	0.464
2.68	0.262	1.881	0.493	3.123	1.206	0.468
2.70	0.258	1.886	0.488	3.183	1.208	0.472
2.77	0.250	1.892	0.484	3.244	1.210	$10+75$
2.74	0.253	1.898	0.479	3.306	1.212	0.479
2.76	0.250	1.903	0.476	3.370	1.214	0.483
2.79	0.247	1.908	0.471	3.435	1.216	0.486
2.80	0.244	1.914	0.467	3.500	1.218	0.489
2.82	0.241	1.919	0.463	3.567	1.220	0.493
2.84	0.238	1.925	0.459	3.636	1.222	0.497
2.86	0.236	1.929	0.455	3.706	1.224	0.499
2.88	0.233	1.935	0.451	3.780	1.226	0.503
2.90	0.231	1.940	0.447	3.850	1.228	0.506
2.92	0.228	1.945	0.443	3.924	1.229	0.509
2.94	0.226	1.949	0.439	4.000	1.231	0.513
2.96	0.223	1.954	0.436	4.076	1.233	0.516
2.98	0.220	1.959	0.432	4.155	1.235	0.519
3.00	0.218	1.964	0.428	4.235	1.237	0.522

TABLE 6.2

Flow of perfect gases with friction (Fanno flow, $\gamma=1.4$)

M	$p^{\prime \prime} p^{*}$	$c / c^{*-} p^{*} / \rho$	$T T^{*}$	$p_{0} i_{0}{ }^{*}$	$F 7 F^{*}$	$4 \bar{f} L_{\text {max }} / 0$
3.10	0.207	1.987	0.411	4.657	1.245	0.537
3.20	0.196	2.008	0.394	5.121	1.253	0.550
3.30	0.186	2.028	0.377	5.628	1.260	0.563
3.40	0.177	2.046	0.362	6.184	1.267	0.575
3.50	0.168	2.064	0.348	6.789	$1 . .274$	0.586
3.60	0.160	2.081	0.334	7.450	1.281	0.597
3.70	0.153	2.096	0.321	8.169	1.287	0.607
3.80	0.146	2.111	0.308	8.951	1.293	0.616
3.90	0.139	2125	0.297	9.800	1.298	0.625
4.90	0.134	2.138	0.286	10.720	1.303	0.633
4.10	0.128	2.150	0.275	11.715	1.308	0.641
4.20	0.123	2.162	0.265	12.792	1.312	0.648
$+.30$	0.117	2173	0.255	13.955	1.317	0.655
+ 40	0.113	2184	0.246	15.210	1.321	0.662
4.50	0.108	2.194	0.237	16.562	1.325	0.668
4.60	0.104	2.203	0.229	18.018	1.330	0.673
4.70	0.100	2.212	0.221	19.583	1.332	0.678
4.80	0.096	2220	0.214	21.264	1.335	0.684
4.90	0.093	2.228	0.207	23.070	1.339	0.689
5.00	0.089	2.236	0.200	25.000	1.342	0.694
6.00	0.064	2.295	0.146	53.180	1.366	0.730
7.00	0.047	2.333	0.111	104.14	1.381	0.753
8.00	0.037	2.359	0.087	190.11	1.392	0.768
9.00	0.029	2.377	0.069	327.19	1.399	0.779
10.00	0.024	2.391	0.057	535.94	1.404	0.787

